

Available at www.ElsevierMathematics.com powered by science doinect.

JOURNAL OF
Approximation
Theory

Journal of Approximation Theory 125 (2003) 303-312

http://www.elsevier.com/locate/jat

A continuous function space with a Faber basis

Josef Obermaier

Institute of Biomathematics and Biometry, GSF—National Research Center for Environment and Health, Ingolstädter Landstr. 1, Neuherberg D-85764, Germany

Received 11 June 2003; accepted in revised form 3 November 2003

Communicated by Walter Van Assche

Abstract

Let $S \subset \mathbb{R}$ be compact with $\#S = \infty$ and let C(S) be the set of all real continuous functions on S. We ask for an algebraic polynomial sequence $(P_n)_{n=0}^{\infty}$ with deg $P_n = n$ such that every $f \in C(S)$ has a unique representation $f = \sum_{i=0}^{\infty} \alpha_i P_i$ and call such a basis Faber basis. In the special case of $S = S_q = \{q^k; k \in \mathbb{N}_0\} \cup \{0\}, 0 < q < 1$, we prove the existence of such a basis. A special orthonormal Faber basis is given by the so-called little q-Legendre polynomials. Moreover, these polynomials state an example with $A(S_q) \neq U(S_q) = C(S_q)$, where $A(S_q)$ is the so-called Wiener algebra and $U(S_q)$ is the set of all $f \in C(S_q)$ which are uniquely represented by its Fourier series.

© 2003 Elsevier Inc. All rights reserved.

Keywords: Continuous function; Polynomial; Basis; Little q-Legendre polynomials; Fourier series; Wiener algebra

1. Introduction and basic facts

Let $S \subset \mathbb{R}$ be compact with $\#S = \infty$ and let C(S) be the set of all real continuous functions on S. It is a typical problem to approximate or to represent a function $f \in C(S)$ going back to the set of real algebraic polynomials. In this context there are some important results on approximation. For instance, by the Stone–Weierstrass theorem [1] there exists a real algebraic polynomial P such that $||f - P||_{\infty}$ is arbitrary small. In case of C([0,1]) Müntz's theorem [1] is an attractive version of the

E-mail address: josef.obermaier@gsf.de.

Weierstrass theorem. Another goal is to determine the element of best approximation in $P_{(n)}$, where $P_{(n)}$ denotes the space of all polynomials P with deg $P \le n$; see [8].

Our aim here is to give a special representation of f. For that purpose we refer to the idea of a basis.

Definition 1. A sequence $(f_n)_{n=0}^{\infty}$ in an infinite Banach space B is called basis if for every $f \in B$ there exists a unique sequence of scalars $(\alpha_n)_{n=0}^{\infty}$ such that

$$f = \sum_{i=0}^{\infty} \alpha_i f_i. \tag{1}$$

In case of B = C(S) a well-known basis is the so-called Schauder basis, see [9], but we are interested in a very special kind of a polynomial basis.

Definition 2. A basis $(P_n)_{n=0}^{\infty}$ of C(S) is called a polynomial basis with strict degrees or Faber basis if P_n is a real algebraic polynomial with deg $P_n = n$ for all $n \in \mathbb{N}_0$.

There is a famous result of Faber that in case of S = [a, b] there does not exist a polynomial basis with strict degrees; see [3]. The question is, whether there are sets S such that a Faber basis exists. For to investigate this question, the following theorem is very useful.

Theorem 1. The following conditions are equivalent.

- (i) There exists a Faber basis $(P_n)_{n=0}^{\infty}$ of C(S).
- (ii) There exists a sequence $(v_n)_{n=0}^{\infty}$ of continuous linear operators from C(S) into C(S) such that
 - (a) $v_n(f) \in P_{(n)}$ for all $f \in C(S)$, $n \in \mathbb{N}_0$.
 - (b) $v_n(p) = p$ for all $p \in P_{(n)}$, $n \in \mathbb{N}_0$.
 - (c) $\lim_{n\to\infty} v_n(f) = f$ for all $f \in C(S)$.
 - (d) $\deg v_n(f) \leq \deg v_{n+1}(f)$ for all $f \in C(S)$, $n \in \mathbb{N}_0$.

If $(Q_n)_{n=0}^{\infty}$ is a sequence of real algebraic polynomials with deg $Q_n = n$ then a Faber basis is given by

$$P_0 = Q_0, \quad P_n = Q_n - v_{n-1}(Q_n) \quad \text{for all } n \in \mathbb{N}.$$

For the proof we refer to [9, Theorem 20.1].

Note that according to the Banach-Steinhaus theorem we may replace (c) in Theorem 1 by

$$||v_n|| < C \quad \text{for all } n \in \mathbb{N}_0. \tag{3}$$

We focus on two special types of a Faber basis.

Definition 3.

- (i) A Faber basis $(l_n)_{n=0}^{\infty}$ is called Lagrange basis with respect to a sequence of distinct points $(s_n)_{n=0}^{\infty}$ in S if $l_n(s_i) = 0$ for all i < n and $l_n(s_n) = 1$ for all $n \in \mathbb{N}_0$.
- (ii) A Faber basis $(p_n)_{n=0}^{\infty}$ is called orthonormal basis with respect to a probability measure π on S if $\int p_n p_m d\pi = \delta_{n,m}$ for all $n, m \in \mathbb{N}_0$, where $\delta_{n,m}$ denotes Kronecker's delta symbol.

In case of a Lagrange basis it holds $f = \sum_{i=0}^{\infty} \lambda_i(f) l_i$ with

$$\lambda_i(f) = f(s_i) - \sum_{j=0}^{i-1} \lambda_j(f)l_j(s_i),$$
 (4)

and in case of an orthonormal basis it holds $f = \sum_{i=0}^{\infty} \mu_i(f)p_i$ with

$$\mu_i(f) = \langle f, p_i \rangle = \int f p_i \, d\pi. \tag{5}$$

Further on we pay particular attention to the set

$$S_q = \{q^k; k \in \mathbb{N}_0\} \cup \{0\}, \quad 0 < q < 1, \tag{6}$$

and prove the existence of a Lagrange basis in Section 2. The set S_q is also well-known as the support of the orthogonality measure which belongs to little q-Jacobi polynomials; see [4]. A special case of these polynomials are the so-called little q-Legendre polynomials. They have been studied thoroughly and they are relevant to different topics, see for instance [5,10]. Especially, they have positive linearization coefficients, i.e. they are associated with a polynomial hypergroup; see for instance [6]. In Section 3 we prove that little q-Legendre polynomials constitute an orthonormal basis of $C(S_q)$.

2. Continuous function spaces with a Lagrange basis

In order to obtain spaces C(S) with a Lagrange basis we characterize the situation as follows.

Lemma 1. If $(l_n)_{n=0}^{\infty}$ is a Lagrange basis of C(S) with respect to a sequence $(s_n)_{n=0}^{\infty}$, then $\{s_0, s_1, ...\}$ is dense in S.

Proof. Denote by X the closure of $\{s_0, s_1, ...\}$ and assume $x \in S \setminus X$. Then there exist functions $f_1, f_2 \in C(S)$ such that $f_1|_X = f_2|_X$ and $f_1(x) \neq f_2(x)$.

By (4) we get $f_1 = f_2$ which yields a contradiction. \square

Due to Lemma 1 one of the most simplest cases to deal with is

$$S = \{s_n; n \in \mathbb{N}_0\} \cup \{s\},\tag{7}$$

where s is the unique limit point of the sequence $(s_n)_{n=0}^{\infty}$. Define

$$L_n^i(x) = \frac{\prod_{k=0, k \neq i}^n (x - s_k)}{\prod_{k=0, k \neq i}^n (s_i - s_k)} \quad \text{for all } n \in \mathbb{N}_0, \quad i = 0, 1, \dots, n.$$
 (8)

Of course, if there exists a Lagrange basis with respect to $(s_n)_{n=0}^{\infty}$, then it is given by

$$l_n(x) = L_n^n(x)$$
 for all $n \in \mathbb{N}_0$. (9)

Lemma 2. Let $(s_n)_{n=0}^{\infty}$ be a strictly increasing or strictly decreasing sequence with limit point s and $S = \{s_n; n \in \mathbb{N}_0\} \cup \{s\}$.

Then there exists a Lagrange basis $(l_n)_{n=0}^{\infty}$ of C(S) with respect to the sequence $(s_n)_{n=0}^{\infty}$ if and only if $\{\sum_{i=0}^{n} |L_n^i(s)|; n \in \mathbb{N}_0\}$ is bounded.

Proof. In case of $x \in \{s_0, s_1, \ldots, s_n\}$ it holds $\sum_{i=0}^n |L_n^i(x)| = 1$ and if $l > m \ge n$, then the assumed monotony of the sequence yields $|L_n^i(s_l)| > |L_n^i(s_m)|$ for all $i = 0, 1, \ldots, n$. Hence, $(\sum_{i=0}^n |L_n^i(s_k)|)_{k=0}^{\infty}$ is monoton increasing and

$$\max_{x \in S} \sum_{i=0}^{n} |L_n^i(x)| = \sum_{i=0}^{n} |L_n^i(s)|.$$
 (10)

Define a sequence of continuous linear operators $(v_n)_{n=0}^{\infty}$ from C(S) into C(S) by

$$v_n(f) = \sum_{i=0}^{n} f(s_i) L_n^i,$$
 (11)

where $v_n(f)$ is the Lagrange interpolation polynomial passing through the points $(s_0, f(s_0)), \ldots, (s_n, f(s_n))$.

For the operator norm it holds

$$||v_n|| = \sup_{||f||_{\infty} \le 1} ||v_n(f)||_{\infty} \le \max_{x \in S} \sum_{i=0}^{n} |L_n^i(x)|.$$
(12)

Choose $g_n \in C(S)$ with $||g_n||_{\infty} \leq 1$ and $g_n(s_i) = \operatorname{sign} L_n^i(s)$. Hence, $||v_n(g_n)||_{\infty} = \sum_{i=0}^n |L_n^i(s)|$ and

$$||v_n|| = \sum_{i=0}^n |L_n^i(s)|. \tag{13}$$

For the rest of the proof we refer to Theorem 1 and

$$\sum_{i=0}^{n} f(s_i) L_n^i = \sum_{i=0}^{n} \lambda_i(f) l_i. \quad \Box$$
 (14)

Now, we are able to prove the following theorem in case of $S = S_q$.

Theorem 2. In case of $C(S_q)$ there exists a Lagrange basis $(l_n)_{n=0}^{\infty}$ with respect to the sequence $s_n = q^n$, $n \in \mathbb{N}_0$.

Proof. It is easy to check that

$$|L_n^0(0)| = \frac{q^{n(n+1)/2}}{\prod_{k=1}^n (1-q^k)} \quad \text{for all } n \in \mathbb{N}_0,$$
(15)

and

$$|L_{n+1}^{i}(0)| = \frac{1}{1 - a^{i}} |L_{n}^{i-1}(0)| \quad \text{for all } n \in \mathbb{N}_{0}, \quad i = 1, 2, \dots, n.$$
(16)

Therefore,

$$\sum_{i=0}^{n} |L_{n}^{i}(0)| = \sum_{i=0}^{n} \prod_{j=1}^{n-i} \frac{1}{1 - q^{i}} |L_{i}^{0}(0)|$$

$$\leqslant \prod_{j=1}^{\infty} \frac{1}{1 - q^{j}} \sum_{i=0}^{n} |L_{i}^{0}(0)|$$

$$\leqslant \prod_{i=1}^{\infty} \frac{1}{1 - q^{i}} \sum_{i=0}^{\infty} \frac{q^{i(i+1)/2}}{\prod_{k=1}^{i} (1 - q^{k})}.$$
(17)

The product and the series on the right-hand side are finite by standard arguments and independent from n. Now, by Lemma 2 the proof is complete. \square

This is not true for an arbitrary set S of shape (7). In order to give a counter-example let

$$S^{r} = \{ (k+1)^{-r}; k \in \mathbb{N}_{0} \} \cup \{ 0 \}, \quad 0 < r < \infty,$$
(18)

and $s_n = (n+1)^{-r}$, $n \in \mathbb{N}_0$. By simple calculations we obtain

$$L_n^n(0) = \frac{1}{\prod_{i=1}^n \left(1 - \left(\frac{i}{n+1}\right)^r\right)}$$
(19)

and $\lim_{n\to\infty} L_n^n(0) = \infty$. Hence, by Lemma 2 there is no Lagrange basis of $C(S^r)$ with respect to the sequence $(s_n)_{n=0}^{\infty}$.

In the next section we give a special orthonormal basis of $C(S_q)$.

3. Little *q*-Legendre polynomials

Let us define a probability measure π on S_q by

$$\pi(q^k) = q^k(1-q)$$
 for all $k \in \mathbb{N}_0$, and $\pi(0) = 0$. (20)

The orthogonal polynomials $(R_n)_{n=0}^{\infty}$ with respect to π are called little *q*-Legendre polynomials. They satisfy a three term recurrence relation

$$R_1(x)R_n(x) = a_n R_{n+1}(x) + b_n R_n(x) + c_n R_{n-1}(x), \quad n \geqslant 1,$$
(21)

with $R_0(x) = 1$ and $R_1(x) = 1 - (q + 1)x$, where

$$a_n = q^n \frac{(1+q)(1-q^{n+1})}{(1-q^{2n+1})(1+q^{n+1})},$$
(22)

$$b_n = \frac{(1 - q^n)(1 - q^{n+1})}{(1 + q^n)(1 + q^{n+1})},\tag{23}$$

$$c_n = q^n \frac{(1+q)(1-q^n)}{(1-q^{2n+1})(1+q^n)}. (24)$$

It holds the orthogonality relation

$$\sum_{k=0}^{\infty} q^k (1-q) R_n(q^k) R_m(q^k) = \frac{(1-q)q^n}{1-q^{2n+1}} \delta_{n,m}, \tag{25}$$

see [4]. The little q-Legendre polynomials are normalized by

$$R_n(0) = 1 \quad \text{for all } n \in \mathbb{N}_0, \tag{26}$$

and they are associated with a so-called hypergroup structure on \mathbb{N}_0 ; see [7]. Therefore, it follows

$$\max_{\xi \in S_q} |R_n(\xi)| = R_n(0) = 1 \quad \text{for all } n \in \mathbb{N}_0.$$
(27)

The orthonormal little q-Legendre polynomials are defined by

$$p_n = \sqrt{\frac{1 - q^{2n+1}}{(1 - q)q^n}} R_n, \tag{28}$$

and we set

$$h(n) = (p_n(0))^2 = \frac{1 - q^{2n+1}}{(1 - q)q^n} \quad \text{for all} \quad n \in \mathbb{N}_0.$$
 (29)

For $x \neq y$ we obtain by Christoffel–Darboux formula [2]

$$\sum_{k=0}^{n} R_k(x) R_k(y) h(k) = \frac{a_n h(n)}{q+1} \frac{R_n(x) R_{n+1}(y) - R_{n+1}(x) R_n(y)}{x-y}, \quad n \in \mathbb{N}_0.$$
 (30)

Now, we are able to prove the following result.

Theorem 3. The sequence of orthonormal little q-Legendre polynomials $(p_n)_{n=0}^{\infty}$ is a Faber basis of $C(S_q)$.

Proof. For $n \in \mathbb{N}_0$ define a continuous linear transformation v_n from C(S) into C(S) by

$$v_n(f) = \sum_{i=0}^n \langle f, p_i \rangle p_i. \tag{31}$$

By Theorem 1 and (3) it remains to prove that there exists a real number C > 0 with

$$||v_n|| = \sup_{\|f\|_{\infty} \le 1} ||v_n(f)||_{\infty} \le C \quad \text{for all } n \in \mathbb{N}_0.$$
 (32)

For arbitrary $x \in S_q$, $f \in C(S_q)$ with $||f||_{\infty} \le 1$, we have

$$v_{n}(f)(x) = \sum_{i=0}^{n} \sum_{j=0}^{\infty} f(q^{j})p_{i}(q^{j})q^{j}(1-q)p_{i}(x)$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{n} f(q^{j})p_{i}(q^{j})q^{j}(1-q)p_{i}(x)$$

$$+ \sum_{i=0}^{n} \sum_{j=n+1}^{\infty} f(q^{j})p_{i}(q^{j})q^{j}(1-q)p_{i}(x)$$

$$= S1_{n}(f, x) + S2_{n}(f, x).$$
(33)

By (27) and (29) it follows

$$|S2_n(f,x)| = (1-q) \left| \sum_{i=0}^n \sum_{j=n+1}^\infty f(q^j) p_i(q^j) q^j p_i(x) \right|$$

$$\leq (1-q) \sum_{i=0}^n (p_i(0))^2 \sum_{j=n+1}^\infty q^j$$

$$= \sum_{i=0}^{n} (p_i(0))^2 q^{n+1} = \sum_{i=0}^{n} \frac{1 - q^{2i+1}}{(1 - q)q^i} q^{n+1}$$

$$\leq \frac{1}{1 - q} \sum_{i=0}^{n} \frac{q^{n+1}}{q^i} \leq \frac{1}{(1 - q)^2} \quad \text{for all } n \in \mathbb{N}_0.$$
(34)

Next, we give an upper bound for $S1_n(f, x)$ which is independent of n. Replacing x by q^m , $m \in \mathbb{N}_0 \cup \{\infty\}$, where $q^\infty = 0$, we get

$$|S1_{n}(f,x)| = (1-q) \left| \sum_{i=0}^{n} \sum_{j=0}^{n} f(q^{j}) p_{i}(q^{j}) q^{j} p_{i}(q^{m}) \right|$$

$$\leq (1-q) \sum_{j=0}^{n} q^{j} \left| \sum_{i=0}^{n} p_{i}(q^{j}) p_{i}(q^{m}) \right|$$

$$\leq (1-q) \sum_{j=0, j \neq m}^{n} q^{j} \left| \sum_{i=0}^{n} p_{i}(q^{j}) p_{i}(q^{m}) \right|$$

$$+ (1-q) q^{m} \sum_{i=0}^{n} (p_{i}(q^{m}))^{2}.$$
(35)

Since $j \neq m$, we obtain by Christoffel–Darboux formula (30) and (27)

$$\left| \sum_{i=0}^{n} p_{i}(q^{j}) p_{i}(q^{m}) \right| = \frac{1 - q^{n+1}}{1 + q^{n+1}} \frac{1}{1 - q} \frac{|R_{n+1}(q^{j}) R_{n}(q^{m}) - R_{n}(q^{j}) R_{n+1}(q^{m})|}{|q^{j} - q^{m}|}$$

$$\leq \frac{1}{1 - q} \frac{|R_{n+1}(q^{j})| + |R_{n}(q^{j})|}{|q^{j} - q^{m}|}.$$
(36)

Hence,

$$(1-q)\sum_{j=0,j\neq m}^{n} q^{j} \left| \sum_{i=0}^{n} p_{i}(q^{j})p_{i}(q^{m}) \right|$$

$$\leq \sum_{j=0,j\neq m}^{n} \frac{q^{j}}{|q^{j}-q^{m}|} (|R_{n+1}(q^{j})| + |R_{n}(q^{j})|)$$

$$\leq \frac{1}{1-q} \left(\sum_{j=0}^{n+1} |R_{n+1}(q^{j})| + \sum_{j=0}^{n} |R_{n}(q^{j})| \right). \tag{37}$$

By Cauchy-Schwarz inequality we derive

$$\sum_{j=0}^{n} |R_{n}(q^{j})| = \frac{1}{1-q} \sum_{j=0}^{n} (1-q)q^{j} \frac{1}{q^{j}\sqrt{h(n)}} |p_{n}(q^{j})|$$

$$\leq \frac{1}{1-q} \sqrt{\sum_{j=0}^{n} (1-q)q^{j} \frac{1}{q^{2j}h(n)}} \sqrt{\sum_{j=0}^{n} (1-q)q^{j} (p_{n}(q^{j}))^{2}}$$

$$\leq \frac{1}{1-q} \sqrt{(1-q) \sum_{j=0}^{n} q^{n-j} \frac{1-q}{1-q^{2n+1}}}$$

$$\leq \frac{1}{1-q} \sqrt{(1-q) \sum_{j=0}^{n} q^{n-j} \leq \frac{1}{1-q}}.$$
(38)

In case of $m = \infty$ the second sum in (35) equals 0. Otherwise, it holds $\pi(q^m) > 0$ and

$$\sum_{i=0}^{n} (p_i(q^m))^2 \le \frac{1}{\pi(q^m)} = \frac{1}{(1-q)q^m},\tag{39}$$

see [2]. To summarize, we have shown

$$|S1_n(f,x)| \le \frac{2}{(1-q)^2} + 1 \quad \text{for all } n \in \mathbb{N}_0.$$
 (40)

Finally, with $C = \frac{4-2q+q^2}{(1-q)^2}$ the proof is complete. \square

One crucial point within the proof of Theorem 3 was to make use of (27) which holds in case of little q-Legendre polynomials but does not hold in general.

For the polynomial hypergroup which is associated with the sequence $(R_n)_{n=0}^{\infty}$ the so-called Wiener algebra $A(S_q)$, see [7], is defined by

$$A(S_q) = \{ f \in C(S_q) : \hat{f} \in l^1(\mathbb{N}_0, h) \}, \tag{41}$$

where

$$\hat{f}(k) = \int fR_k \, d\pi \quad \text{for all } k \in \mathbb{N}_0.$$
 (42)

Of course, $A(S_q) \subset U(S_q)$, where $U(S_q)$ denotes the set of all functions $f \in C(S_q)$ which are uniquely represented by its Fourier series

$$f = \sum_{k=0}^{\infty} \hat{f}(k) R_k h(k). \tag{43}$$

In [7] we have proven that $A(S_q) \neq C(S_q)$. Now, by Theorem 3 we have shown that $U(S_q) = C(S_q)$, and therefore,

$$A(S_q) \neq U(S_q) = C(S_q). \tag{44}$$

We should mention that due to Theorem 3 and former results, see [6], the little q-Legendre polynomials also constitute a basis of the Banach spaces $L^p(S_q, \pi)$, $1 \le p < \infty$.

References

- [1] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
- [2] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
- [3] G. Faber, Über die interpolatorische Darstellung stetiger Funktionen, Jahresber. Deutsch. Math. Verein. 23 (1914) 192–210.
- [4] R. Koekoek, R.F. Swartouw, The Askey-scheme of hypergeometric orthogonal polynomials and its *q*-analogue, Technical Report 98-17, Delft University of Technology, 1998.
- [5] T.H. Koornwinder, The addition formula for little q-Legendre polynomials and the SU(2) quantum group, SIAM J. Math. Anal. 22 (1991) 295–301.
- [6] R. Lasser, J. Obermaier, On the convergence of weighted Fourier expansions, Acta. Sci. Math. 61 (1995) 345–355.
- [7] R. Lasser, J. Obermaier, Orthogonal expansions for L^p- and C-spaces, in: Special Functions, Proceedings of the International Workshop, World Scientific Publishing, Singapore, 2000, pp. 194–206.
- [8] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, New York, 1970.
- [9] I. Singer, Bases in Banach Spaces I, Springer, New York, 1971.
- [10] W. Van Assche, Little q-Legendre polynomials and irrationality of certain Lambert series, The Ramanujan J. 5 (2001) 295–310.