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Abstract

Let S<=R be compact with #5 = oo and let C(S) be the set of all real continuous functions
on S. We ask for an algebraic polynomial sequence (P,),-, with deg P, = n such that every
f€C(S) has a unique representation f = > o;P; and call such a basis Faber basis. In the
special case of S = S, = {¢¥; ke Ny} U{0}, 0<g<1, we prove the existence of such a basis. A
special orthonormal Faber basis is given by the so-called little g-Legendre polynomials.
Moreover, these polynomials state an example with A(S,)# U(S,) = C(S,), where A(S,) is
the so-called Wiener algebra and U(S,) is the set of all feC(S,) which are uniquely
represented by its Fourier series.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction and basic facts

Let S<=R be compact with #S = oo and let C(S) be the set of all real continuous
functions on S. It is a typical problem to approximate or to represent a function
feC(S) going back to the set of real algebraic polynomials. In this context there are
some important results on approximation. For instance, by the Stone-Weierstrass
theorem [1] there exists a real algebraic polynomial P such that ||f — P|| , is arbitrary
small. In case of C([0,1]) Miintz’s theorem [1] is an attractive version of the
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Weierstrass theorem. Another goal is to determine the element of best ap-
proximation in P, where P(, denotes the space of all polynomials P with
deg P<n; see [8].

Our aim here is to give a special representation of f. For that purpose we refer to
the idea of a basis.

Definition 1. A4 sequence (fy,),-, in an infinite Banach space B is called basis if for every
[ €B there exists a unique sequence of scalars (o), such that

F=3 (1

In case of B = C(S) a well-known basis is the so-called Schauder basis, see [9], but
we are interested in a very special kind of a polynomial basis.

Definition 2. A4 basis (P,),~, of C(S) is called a polynomial basis with strict
degrees or Faber basis if P, is a real algebraic polynomial with deg P, =n for

all neNy.

There is a famous result of Faber that in case of S = [a, b] there does not exist a
polynomial basis with strict degrees; see [3]. The question is, whether there are sets S
such that a Faber basis exists. For to investigate this question, the following theorem
is very useful.

Theorem 1. The following conditions are equivalent.

() There exists a Faber basis (Py,),—, of C(S).
(ii) There exists a sequence (vy),—, of continuous linear operators from C(S) into
C(S) such that
(@) va(f) € Py for all feC(S), neNy.
(b) va(p) = p for all pe Py, neNy.
(¢) lim,—, » v,(f) =f for all f e C(S).
(d) degv,(f)<deguvui(f) for all f € C(S), neNy.

If (On),=, is a sequence of real algebraic polynomials with deg Q, = n then a Faber
basis is given by

Py = Qo, Pn:Qn_Unfl(Qn) Jor all neN. (2)

For the proof we refer to [9, Theorem 20.1].
Note that according to the Banach—Steinhaus theorem we may replace (c) in
Theorem 1 by

[lon]|<C  for all neNy. (3)

We focus on two special types of a Faber basis.
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Definition 3.

() A Faber basis (I,),-, is called Lagrange basis with respect to a sequence
of distinct points (sy),—o in S if L(s;) =0 for all i<n and 1,(s,) =1 for
all neNy.

(i) A Faber basis (p,),-, is called orthonormal basis with respect to a probability
measure © on S if fpnpm dn = 0y for all n,meNgy, where §,,, denotes
Kronecker’s delta symbol.

In case of a Lagrange basis it holds /' = Y2, Z;(f); with
i-1
7 = £ () = 3 AV, 4)

J=0

and in case of an orthonormal basis it holds f = > ”, u,(f)p; with

ulf) = <S> = [ i (5)
Further on we pay particular attention to the set

S, = {¢"keNgyu{0}, 0<g<l, (6)

and prove the existence of a Lagrange basis in Section 2. The set S, is also well-
known as the support of the orthogonality measure which belongs to little g-Jacobi
polynomials; see [4]. A special case of these polynomials are the so-called little
g-Legendre polynomials. They have been studied thoroughly and they are relevant to
different topics, see for instance [5,10]. Especially, they have positive linearization
coefficients, i.e. they are associated with a polynomial hypergroup; see for instance
[6]. In Section 3 we prove that little g-Legendre polynomials constitute an
orthonormal basis of C(S,).

2. Continuous function spaces with a Lagrange basis

In order to obtain spaces C(S) with a Lagrange basis we characterize the situation
as follows.

Lemma 1. If (1,),-, is a Lagrange basis of C(S) with respect to a sequence (s,),—,
then {so,s1, ...} is dense in S.

Proof. Denote by X the closure of {sg, s, ...} and assume xe S\X. Then there exist
functions f1, > € C(S) such that fi|, = f2|y and fi(x) #f2(x).
By (4) we get fi = f> which yields a contradiction. [
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Due to Lemma 1 one of the most simplest cases to deal with is

S ={su;;neNg}u{s}, (7)
where s is the unique limit point of the sequence (s,),—-
Define
A hokzi(X—s
Li(x) = Hicopnix =56y neNy, i=0,1,...,n. (8)

HZ:O.k;éi(si — Sk)

Of course, if there exists a Lagrange basis with respect to (s,),,, then it is given by
L(x) = L;(x) for all neN,. 9)

Lemma 2. Let (s,),-, be a strictly increasing or strictly decreasing sequence with limit
point s and S = {s,;;neNy}u{s}.

Then there exists a Lagrange basis (I,),-, of C(S) with respect to the sequence
(Sn) g if and only if {37 |LL(s)|; neNg} is bounded.

Proof. In case of xe{so,s1, ...,s,} it holds >_7 ; |L! (x)| = 1 and if />m>n, then the
assumed monotony of the sequence yields |L! (s;)|>|L(sm)| for alli = 0,1, ..., n.
Hence, (37, |Li(sk)|)4—, is monoton increasing and

max L5 = D L)) (10)
’ i=0 i—0

Define a sequence of continuous linear operators (v,),—, from C(S) into C(S) by

0l =3 f6)L, (11
i=0

where v,(f) is the Lagrange interpolation polynomial passing through the points

(80, (50))5 -+ (S, (5n))-

For the operator norm it holds

[|vn]] :| sup v ()| max Z |L! (x (12)

‘tx,\

Choose g,eC(S) with ||g,||,, <1 and g,(s;) = sign Ll (s). Hence, ||v.(gx)||.,, =
> im0l Ly (s)] and

leall = 37 1Z1(9)] (13)
=0
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For the rest of the proof we refer to Theorem 1 and
S fL =" ANk D (14)
i=0 i=0

Now, we are able to prove the following theorem in case of S = §,,.
Theorem 2. In case of C(S,) there exists a Lagrange basis (1), with respect to the
sequence s, = q", neNj.

Proof. It is easy to check that

1L2(0)] ¢k all nen (15)
=——————— forall neNy,
! [Tz (1—4¢")
and
. 1 .
|L,.1(0)] = = qi|L;,’1(0)\ for all neNy, i=1,2,...,n. (16)
Therefore,
n ) n n—i 1
> L= [T =5 Lo
i=0 i=0 j=1
<1l-— > 1)
j=1 -7 =
0 i(i+1)/2

1 q
< || A - :
J -7 = [Tiei (1 =)

j=1

(17)

|M8

The product and the series on the right-hand side are finite by standard arguments
and independent from n. Now, by Lemma 2 the proof is complete. [

This is not true for an arbitrary set S of shape (7). In order to give a counter-
example let

S"={(k+1)"keNyg}u{0}, O<r<oo, (18)
and s, = (n+1)™", neNy. By simple calculations we obtain
12(0) = 1 (19)
" [T (1= G&))

and lim,_, ,, L'(0) = co. Hence, by Lemma 2 there is no Lagrange basis of C(S")
with respect to the sequence (s,),-.
In the next section we give a special orthonormal basis of C(S,).
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3. Little g-Legendre polynomials
Let us define a probability measure = on S, by

n(¢") = ¢"(1 —q) for all keNy, and =(0)=0. (20)

The orthogonal polynomials (R,),—, with respect to = are called little ¢g-Legendre
polynomials. They satisfy a three term recurrence relation

Ri(x)R,(x) = ayRyt1(x) + by Ry(x) + ¢y Ry—1(x), n=1, (21)
with Ry(x) =1 and R;(x) =1 — (¢ + 1)x, where

o (g1 =g
an =9 (1 — @) (1 + g1) (22)
(=g -¢""
A D () 2
Cn:qn (1 )(17 n) (24)

(I =g (1 +4q")

It holds the orthogonality relation
- 1—q)q
> ¢ (1= @) Ru(d)Ru(d") = g—ﬁﬂém (25)
k=0 q

see [4]. The little g-Legendre polynomials are normalized by

R,(0) =1 for all neNy, (26)

and they are associated with a so-called hypergroup structure on Nj; see [7].
Therefore, it follows

max |R,(&)| = R,(0) =1 for all neN,. (27)
CEVy

The orthonormal little g-Legendre polynomials are defined by

1= q2n+l
DPn =\l Ry, 28
(1-9)q" (28)
and we set
5 1= q2n+l
h(n) = (pn(0)) =) for all neNy. (29)
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For x#y we obtain by Christoffel-Darboux formula [2]

i Ry (X)Rk (y h(k) _ ClqnilL(ri) R, (X)Rn-H (y))c : fn+l (X)Rn(y)7 neNp. (30)

Now, we are able to prove the following result.

Theorem 3. The sequence of orthonormal little q-Legendre polynomials (p,),-, is a
Faber basis of C(S,).

Proof. For neNj define a continuous linear transformation v, from C(S) into
C(S) by

va(f) = Z fpiopi. (31)
i=0
By Theorem 1 and (3) it remains to prove that there exists a real number C >0 with

[lon]] = sup |va(f)||, <C for all neN,. (32)
W

‘Uj g
For arbitrary xeS,, f e C(S,) with ||f]|, <1, we have

n

Un(f Z Zf l_q)pl( )

i=0 j=0

=
=

=3 F(@pi(d)d (1 — q)pi(x)

+ 2. f(Q)pl( ) (l_q)pz()

=SL(f,x) + S2,(f, x). (33)

By (27) and (29) it follows

5200 =(1-0) 3 S f@wld)am()
i=0 j=n+1
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n o1 — g2l

_ (0 2qn+1 _ q i n+1
> (i) ;;@t@;
1 n n+1 1
<7 . qqi <(1 7 for all neNy. (34)
I = -4

Next, we give an upper bound for S1,(f, x) which is independent of n. Replacing x
by ¢", meNgu {0}, where ¢ =0, we get

|Sln(f |_ 1_ ( m)

—9q) Zn: q
=0

f}mmp@>
=0

7 Z pi(d)pilq™)

i=0

<(l-gq) Z

Jj=0j#m

+ (1= q)g™ > (pilg™)’. (35)
i=0
Since j#m, we obtain by Christoffel-Darboux formula (30) and (27)

L=¢"" 1 |Ruct(¢)Ru(g™) = Ru(g)Ruc1 (q")]

ey rErd
U [Rui (@) + [Ra(d)] (36)
1 — q |q/ _ qm|
Hence,
(I—q) > &> pld)pild")
Jj=0j#m i=0

<y —%éﬁwmwmdn+madm

j=0j#m |q] |

n+1 n
J=



J. Obermaier | Journal of Approximation Theory 125 (2003) 303-312 311

By Cauchy-Schwarz inequality we derive

n ) 1 n ' 1 4
" =1_, 1- T = 1Pn
DR =75 2 (1= s (@)

1 - o1 K . .
<m > —Q)Q’WJZ (1= 9)¢ (pa(¢))’

Jj=0 Jj=0

1
ST=4 l—qzq’” 2n+1

- A 1
(1-9q) Z ST (38)
=0 1

<L
l—q\

In case of m = oo the second sum in (35) equals 0. Otherwise, it holds 7(¢™) >0 and

DN ) (39)
i=0

n(gm) (1 —q)q™

see [2]. To summarize, we have shown

2
|51;1U',X)|<(1 5+ 1 for all neN. (40)

Finally, with C = 4( 2‘1;)‘1 the proof is complete. [J

One crucial point within the proof of Theorem 3 was to make use of (27) which
holds in case of little g-Legendre polynomials but does not hold in general.

For the polynomial hypergroup which is associated with the sequence (R,),_, the
so-called Wiener algebra A(S,), see [7], is defined by

A(Sy) = {feC(Sy) : fel' (No, )}, (41)

where

k)= /ka dn for all keNy. (42)

Of course, A(S,)<= U(S,), where U(S,) denotes the set of all functions f e C(S,)
which are uniquely represented by its Fourier series

/= Zw:f k)Rich(k (43)
k=0
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In [7] we have proven that A(S,) # C(S,). Now, by Theorem 3 we have shown that
U(Sy) = C(S,), and therefore,

A(Sq) a U(Sq) = C(Sq)- (44)

We should mention that due to Theorem 3 and former results, see [6], the little
g-Legendre polynomials also constitute a basis of the Banach spaces L7(S,, ),
I<p<oo.

References

[1] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.

[2] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.

[3] G. Faber, Uber die interpolatorische Darstellung stetiger Funktionen, Jahresber. Deutsch. Math.
Verein. 23 (1914) 192-210.

[4] R. Koekoek, R.F. Swartouw, The Askey-scheme of hypergeometric orthogonal polynomials and its
g-analogue, Technical Report 98-17, Delft University of Technology, 1998.

[5] T.H. Koornwinder, The addition formula for little ¢-Legendre polynomials and the SU(2) quantum
group, SIAM J. Math. Anal. 22 (1991) 295-301.

[6] R. Lasser, J. Obermaier, On the convergence of weighted Fourier expansions, Acta. Sci. Math. 61
(1995) 345-355.

[71 R. Lasser, J. Obermaier, Orthogonal expansions for L”- and C-spaces, in: Special Functions,
Proceedings of the International Workshop, World Scientific Publishing, Singapore, 2000,
pp. 194-206.

[8] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer,
New York, 1970.

[9] I. Singer, Bases in Banach Spaces I, Springer, New York, 1971.

[10] W. Van Assche, Little g-Legendre polynomials and irrationality of certain Lambert series, The
Ramanujan J. 5 (2001) 295-310.



	A continuous function space with a Faber basis
	Introduction and basic facts
	Continuous function spaces with a Lagrange basis
	Little q-Legendre polynomials
	References


